

Magister inženir strojništva/ magistrica inženirka strojništva

Selected qualifications

Diplomirani inženir okoljskega gradbeništva (un)/diplomirana inženirka okoljskega gradbeništva (un)

Name of qualification

Magister inženir strojništva/ magistrica inženirka strojništva

Translated title (no legal status)

Master of Science in mechanical engineering

Type of qualification

Diploma druge stopnje

Category of qualification

Izobrazba

Type of education

Master's education

Duration

2 years

Credits

120 credits

Enrolment in the first year is open to candidates who have completed:

- a first-cycle study programme (180 credits) in the field of engineering sciences, manufacturing technologies, architecture and civil engineering, computing, environmental protection:
- a first-cycle study programme (180 credits) in another unrelated field. Course units consisting of 30 credits from the first-cycle Technologies and Systems programme are determined for such candidates and must be completed before enrolment;
- a professional higher education programme, adopted before 11 June 2004, in the field of engineering sciences, manufacturing technologies, architecture and civil engineering, computing, environmental protection;
- a professional higher education programme, adopted before 11 June 2004, in another unrelated field. Course units consisting of 30 credits from the first-cycle Technologies and Systems programme are determined for such candidates and must be completed before enrolment.

ISCED field

Admission requirements

Field

Tehnika, proizvodne tehnologije in gradbeništvo

ISCED subfield

subfield interdisciplinarne izobraževalne aktivnosti/izidi, pretežno tehnika, proizvodne tehnologije in gradbeništvo

Qualification level

SQF 8 EQF 7 Second level

Learning outcomes

The qualification holder will be able to:

(general competences)

- demonstrate individual creative thinking,
- resolve specific work problems.
- demonstrate holistic critical thinking and the ability to analyse, synthesise and foresee solutions in the field of engineering disciplines and manufacturing technologies (interdisciplinarity),
- demonstrate familiarity with and apply research methods, procedures, processes and technology,
- creatively apply knowledge in the technical and technological manufacturing environment,
- demonstrate familiarity with and understanding of processes in the technical and technological manufacturing environment and the ability to analyse and synthesise findings and envisage solutions or consequences,
- recognise the need for changes and introduce innovations in technical and technological environments.
- · demonstrate autonomy and responsibility in decision-making,

- communicate in the local and international environment,
- demonstrate a commitment to professional ethics,
- present acquired knowledge and research findings,
- be conscious of the need to develop, supplement, enhance and update their knowledge, i.e. the need to seek new sources of knowledge in their professional or scientific field.

(subject-specific competences)

- demonstrate familiarity with and understanding of the basic laws of physics and mathematics that are common to all fields of engineering,
- demonstrate proficiency in the use of selected mathematical tools to solve engineering problems,
- apply the methods of critical analysis and the development of theories,
- resolve specific problems through the application of scientific methods and procedures,
- build, plan, model, optimise, evaluate, manage and produce technologically complex products and systems,
- master new technological procedures and processes,
- rapidly transfer domestic or foreign research achievements into practice,
- use information and communication technology and systems as a source of information, a means of communication, a tool in research and as a tool of work,
- demonstrate in-depth knowledge and understanding of organisations and processes in the modern technological environment,
- perform strategic management, administration and development of the most complex work systems,
- demonstrate understanding of values, value systems and the principles of professional ethics,
- show a proactive attitude towards interest groups (partners, suppliers, customers, competitors, etc.),
- verify and assess employees' achievements and provide feedback,
- demonstrate familiarity with and understanding of the theoretical bases and principles of counselling work.

Assessment and completion

Students' knowledge is assessed by means of practical exercises and seminar papers, and also via products, projects, performances, services, etc. and by examinations. Examination performance is scored as follows: 10 (excellent); 9 (very good: above-average knowledge but with some mistakes); 8 (very good: solid results); 7 (good); 6 (adequate: knowledge satisfies minimum criteria); 5–1 (inadequate). In order to pass an examination, a candidate must achieve a grade between adequate (6) and excellent (10).

Progression

In order to progress to the second year, students must complete first-year course units consisting of at least 46 credits.

Transitions

Third-cycle doctoral study programmes (SQF level 10)

Condition for obtaining certificate

In order to complete the programme, students must complete all course units prescribed by the programme for a total of at least 120 ECTS credits.

Awarding body

College of Technologies and Systems, Novo Mesto Higher Education Centre

URL

http://fts.vs-nm.si/en/home/